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THE ONE-DIMENS IONAL TIME-DEPENDENT INTERACTION OF A SATELLITE
WITH THE IONOSPHERIC PLASMA

SUMMARY

The time-dependent equations describing the
one-dimensional interaction of a streaming plasma
with an infinite flat plate were derived and solved
numerically by a modified Euler method. Solutions
were obtained for: (1) the case of a plate with no
initial surface charge at an altitude of 200 km and
(2) the transition from equilibrium conditions at
200 km to an equilibrium state at 3000 km.

In general the surface charge density was found
to overshoot to a peak value early in the interaction,
as a result of the initial rapid collection of electrons,
and slowly decay toward an equilibrium value as the
effect of the ions became more pronounced. At
200 km the sheath thickness was found to be 0.33 cm
and the relaxation time 1.42 ys, while at 3000 km
the sheath thickness and relaxation time were 7.3
cm and 30. 5 us respectively.

INTRODUCTION

Purpose

The net result of the interaction of a body,
whether moving or stationary, and a plasma, in
which the body is immersed, is a charge accumu-
lation on the surface of the body. The electric
potential associated with this charge in turn affcets
the surrounding plasma, creating a space charge in
the disturbed or sheath region near the body.

In this report, a theoretical treatment of the
mechanisms that produce the electric potential
associated with a body moving through a collision-
less ionospheric plasma is undertaken. Special
attention is given to the time dependence of the
electric field with the intention of investigating the
behavior of the various sheath parameters as the
body moves rapidly through nonuniform regions of
the plasma. A system of equations that describes

a one~-dimensional model of the problem is established,

and numerical methods are invoked to find a solution.

Background

The realm of plasma physics dealing with
satellite~-ionospheric interactions has grown in
interest along with the ever increasing application
for and complexity of earth satellites. The sheath
effects mentioned above can significantly alter the
performance of onboard instrumentation and,
therefore, must be taken into account in the planning
and interpretation of satellite~-borne experiments.
Correspondingly, a great volume of work has been
done in this area.

To briefly review development in the field, we
should first consider an early paper by Jastrow
and Pearse in which the effects caused by the
motion of a body in a plasma are studied, assuming
a spherically symmetrical potential distribution
and a uniform, undisturbed ion density [1]. These
assumptions have since been found to be incorrect
so that the above approach is good only as a first
approximation. In a later paper, Kraus and Watson
used kinetic equations to calculate the potential
and ion number density around a point-like charge
moving through the ionosphere [2]. This would
imply that the body radius is much smaller than
the Debye radius. However, it has been found that
the Debye radius in the ionosphere is considerably
smaller than the dimensions of a typical satellite.
A third paper, published by Davis and Harris and
dealing with the same problem, is of interest,
because numerical methods were used to solve
simultaneously the equations of potential and the
motion of ions near a body moving in a plasma [3].

Although these papers provide a good foundation
in the area of satellite-ionospheric interactions,
none of them attack the time-dependent problem.

In fact, in searching the literature for information
on the problem treated herein, it was found that
relatively little had been done toward the develop-
ment of a suitable time~dependent theory of the
satellite-ionospheric interactions, most of the
work having dealt with all aspects of the steady-
state interaction for various vehicle geometries.

Some work of a time-dependent nature has been
done by G. S. Kino and associates at Stanford



University [4,5,6,7]. However, this work deals
with the problem of transmitting rf waves through
a discharge plasma and does not apply directly to
the problem treated herein. Getmantsev and Denisov
have also done work of a time-dependent nature in
which they found a plasma disturbance caused by
high-frequency electromagnetic field fluctuations
near cylindrical bodies slowly moving through a
plasma [8]. This work applies only to slowly
moving bodies. This is not a good assumption for
satellites and, further, would change the nature of
the ion interaction since their thermal energy
would become important.

Two particular cases of the time-dependent
satellite-ionospheric interaction will be treated in
detail in this report. First, there is the case in
which the satellite has no initial surface charge and
is assumed to be at zero potential, Assuming an
equal density of ions and electrons in the undisturbed
plasma, the more mobile electrons will initially
collect on the surface of the satellite at a greater
rate than the ions. This will create a negative
potential on the satellite that will, in turn, slow the
incoming electrons and accelerate the ions, thereby
increasing their relative rate of incidence. Hence,
as the ion flux at the surface builds, the potential
will become more negative at a decreasing rate until
an equilibrium condition is reached in which the ion
and electron fluxes at the surface of the satellite
are equal,

In the second case treated herein the interaction
is initially taken to be at some preestablished
equilibrium state. A step change is then made in
the plasma parameters and the interaction moves
to a new equilibrium state.

The general behavior of the interaction in this
case is similar to that described previously with
the exception that there is an initial surface charge
on the satellite and, hence, an electric field that
acts on the plasma, The effect of the electric
field on the plasma produces the equilibrium state
of the previous case. From this point, the electric
field increases or decreases to become compatible
with the new parameters.

Approach

In order to attack the problem, it was necessary
to make several assumptions. First, by taking the
body or satellite under consideration to be an infinite
flat plate, oriented perpendicularly to the plasma

flow, the problem is effectively reduced to one
dimension with a corresponding reduction in com-
plexity of the equations. This can be interpreted
physically to mean that only a very small region at
the stagnation point on the satellite will be con-
sidered. Consequently, the electric field, and
other sheath parameters, can be observed only

in the forward direction. However, the problem

is still physically meaningful, since it is conceivable
that an infinite flat plate would be a reasonable
approximation of a small probe located at the
stagnation point of a satellite.

To facilitate the formulation of the problem, we
take the inverse of the actual physical situation and
let the plasma stream into a stationary plate with
the satellite velocity. This will not affect the solu-
tion since it is the relative velocity of the satellite,
or plate, and the plasma that are important, It
should also be noted that any experimental verifica-
tion in earthbound laboratories will require this
arrangement. Since the ion mean thermal velocity
in the ionosphere is an order of magnitude less than
typical satellite velocities, the random thermal
motion of the ions will be neglected. The ions,
then, will all have the same velocity at any time and
position. The mean thermal velocity of the
ionospheric electrons is much greater than typical
satellite velocities, and we therefore assume them
to have a Maxwellian velocity distribution. Con-
sidering the small ratio of electron to ion masses,
it is reasonable to assume an instantaneous relaxa-
tion of the electrons.

In this treatment we omit the effects of the
earth's magnetic field, neutral particle collisions,
and corpuscular radiation (photoelectric effect).
Since we are dealing with a collisionless plasma
in a very small region near the irontal surface of
a satellite, these components of the interaction will
produce relatively small effects compared with the
electric potential resulting from differential charge
flux to the surface.

Two further facts about the ionospheric plasma
should be brought out before going further into the
treatment of the problem. First, as a result of
neglecting the ion thermal velocity, we effectively
assume zero ion temperature, and therefore only
the electrons will be affected by temperature, Any
further references to temperature will, therefore,
be made to the thermal energy of the electrons.
Secondly, the undisturbed, ionospheric plasma is
macroscopically neutral so that at any point far
from the plate the electron and ion number densities



will be equal. Some feeling for the validity of these
and the other assumptions made in this chapter can
be obtained by observing the ionospheric parameters.
Some typical values are given in Table 1.

In terms of electrical charge, the ionosphere
can be considered to be a two-component gas con-
sisting of singly charged ions and electrons. A
separate Bolizmann equation must be applied to each

TABLE 1, IONOSPHERIC PARAMETERS
Altlitude (km)

Parameters 200 300 3000
Satellite Velocity (km/sec) 7.78 7.73 6. 52
Ton-Electron Density (m=3) [9] (3-50) x 10%0 (10-20) x 101 7x 10°
Temperature (K°) [9] 450-800 1000 4000
Ion-Electron Mean Free Path (m) [9] 90 70 3x 10t
Neutral Mean Free Path (m) [9] 80 1000 2% 1012
Debye Length (cm) [9] 0.2-1 0.14-0.7 4
Ion Composition [10] No', o, , o' o' (98%), N He+
Average Ion Mass 24 16 4
VS/Vi 13 i1 4

species of a multicomponent gas [12]. We will

DERIVATION OF EQUATIONS

Time-Dependent Equations

The ionospheric plasma must be treated as a
collection of discrete particles rather than as a
continuous medium. It follows, then, that fluid
flow equations used in hydrodynamics and aero-
dynamics cannot be applied to this type of problem.
Nor is it feasible to follow dynamic trajectories of
individual particles, except in very limited cases.
These difficulties can be circumvented, however, by
use of the Boltzmann equation, which provides
accurate statistical information about the distribution
function and average expected values of quantities
describing particle behavior [11]. In its collision~
less form, the Boltzmann equation is

of of
Gt o 2.

e}
ot Cox + P (fF) =0 (1)

where f is the distribution function, c¢ is velocity,
and F is acceleration resulting from external
forces.

therefore have two equations, one that describes
ion velocity distribution and another for electron
velocity distribution.

As pointed out previously, the electron thermal
velocity is much greater than the satellite velocity,
and it is therefore reasonable to consider this
component of the ionospheric plasma to be at
equilibrium. In this case, the electron behavior
can be described by the Maxwell-Boltzmann distri-

bution function [13 14]. In one dimension, this
function is of the form,

m 1/2 m c?

€ ex e
27kT P oKt
e e

- P (x,t)
£ (x,tc) = N< - =y

(2)

where N is the fotal number of particles in the
system, k is the Boltzmann constant, and & is
the potential energy of the system. This is an exact
solution to the steady-state Bolizmann equation. Its
use as a time-dependent solution assumes instan-
taneous relaxation of the electrons.



We now consider the ions. As stated previously,
the ion thermal velocity is much smaller than the
satellite velocity and can be neglected, The ions
will then have a uniform velocity distribution in
space and time, which can be written in the form,

£ (x.t,c) = n(xb) 6[c+ ui(x,t)] (3)

where u, is the average ion velocity and depends
on x and t, and nl, is the ion number density

and also depends on x and t.

Multiplying the Boltzmann equation (1) by a
constant or any function of ion velocity and inte-
grating over velocity space, we can obtain the
equations of transfer, which are more easily
solved than the Boltzmann equation [15]. Using the
ion mass, mi, as the multiplier and performing

the appropriate integration, we obtain

0 of. of,
i

i 2
fmi SC et e (Ff) | de = 0

—00

or

0 of, 0 af o
RN 3 2 -
fw 5r de jmc ™ do+foo oo (Ff) de=0.

Since x and t are independent variables, the
partial derivatives of these variables can be
brought outside the integral. Performing this
operation and replacing 1']. hy expression (3). we
obtain

9 0
ot I:mi _fw S(c + ui) dcj‘

9 0
+§ n, f cé(c+ui) de

-

0
a
I T °_ S
I‘nl_foo 5o [6(c+u1_):| de 0

Notice that the third term reduces to
Fnid(c—ui) [(_)w , Which is zero at both limits.

The remaining terms have values only when
c= —ul.. The foregoing expression therefore

reduces to

9 _8_ _
ot ™)+ ox [ni(-ui)]— 0

or

o 2
ot [ni(x,t)] " on [ni(x,t) ui(x,tl:l =0
(4)
This is the conservation of mass, or continuity
equation for ions.
By multiplying the Boltzmann equation (1)
by t/2 1n1_02 and integrating over velocity space

in a similar manner, we can obtain the conserva-
tion of energy equation for ions. The integration
is carried out as follows:

0 ot of,
[ Emel —teo—2 +-2 (rr)| de=0
S o2 O Tat ox  ac “h’| 907

0
2 2
ot ni f c 6(c+ui) de
-0
o 0 ]
+ = 3 - o
Bx ni f c? 6(c ui) d
s _j

0
5 _ 0
+ _9_ _
Fni L [ P [6(c+ui)J de 0

The acceleration, F, results from the electric
field associated with the plate and is therefore
qE/ml, , where E is a function of x and t. The

acceleration, F, can therefore be taken out of
the integral since in this case it is not a function of
velocity., This yields




"gt_ [“i(‘“i)z] * a_ax [ ni(—ui)3:|

0
(1 2 .
+Fni 1[0 6(c + ui)il B
0
—f Zcé(c+ui) dc,= 0 .

Note that the term c?6(c - ui) l(_)oo is zero at both
limits, and the integral is 2(—ui). The preceding

expression now simplifies to the form,

8 ) 8 .
o [ni(x,w ui(x,w] - [ni(x,w ui(x,m]

2q
+ mi E(x,t) ni(x,t) ui(x,t) = 0

where we have replaced F by qE/mi. This

equation can be simplified if we first expand the
terms to obtain

, _9 2_9 _9 2
2n; wy e () +uy s () - nguy e ()

0 2
—ud = (n,u,) +—i En,u, = 0
i ox ii mi i1

Rearranging terms we get

3 . [ 2 5
200, =2 (u,.) + 2 ) -2
oW e () T [at () -5 oy ui)j|

2,
- 2n, u?—a—— (u,) + =1 En,u, = 0
i i 8x i m, i’i

Now the term in brackets is exactly equation (4),
which is equal to zero. We can also divide the
remaining terms by 2ni ul, to obtain

2
—a—t- [ui(x,t)] - ui(x,t) _88; l:ui(x,t) :l

. _
o Ext) =0

1

, (5)

which is the conservation of energy equation
for ions.

In the above derivations, the limits of integra-
tion are taken from -« to 0, because the ions
move in the negative x-direction when traveling
toward the plate. The 0 to 4+« range is not included
because all ions that strike the conducting plate are
absorbed or neutralized. Since all ions initially
stream toward the plate and none are reflected,
there can be no positive component of the ion
velocity distribution (Fig. 1).

The two foregoing conservation equations
contain the three dependent variables, n, W, and

E. A third equation is, therefore, required to
obtain a solution. This is provided by Gauss'
equation, which in its general form is

—

V- E(x,t) = p(x,t)/¢€, . (6)

In the above equation p is the net charge density
per unit volume. Note that we have not used the
wave equation because the potential retardation
term, 1/c? (8%¢/0t?), is assumed to be negligible
for this case.

The net charge density is obtained by adding
the total charge density of ions and electrons as
follows:

pix,t) = g [ Zni(x,t) - ne(x,t) ] . (7)

Here, Z represents the number of charges per
ion. However, since we assume only singly
ionized particles to exist, Z will have a value of
unity. The number densities, n, and ne are

3

average values. The ion average number density,
n., must be obtained from the solution of the

equations; however, the electron average number
density can be found from expression (2) as follows
[16]:
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Figure 1. Plasma stream and plate configuration.

The potential energy for electrons, &,

to -q¢ where ¢ is the electric potential,
can, in turn, be written in terms of the electric

field as follows:

m
e 2
T
me /2 <2kTe>c &/k e
N 21k de E = -V¢ = -do/dx?
m
1/2 -<—i> c? o 0
m -$/kT 2kT
Edx = - do' =
= e e © de f f ¢ ¢
27k T X ¢
e —00

in the form

m
e

q
kT
n (x,t) = Ne
e

Then the electron number density can be written

f E(x,t) dx




Substituting equation (8) and equation (7) into
equation (6), we obtain Poisson's equation in the
form

o0
q
T f'E(x,t)dx
9E (x,t) _ g n(x,t) -Ne e x
ox € i’

(9)

The boundary conditions for the system of
equations (4), (5), and (9) can be described in
terms of the electric field, which must go to zero
for any set of initial conditions and time as the
distance from the plate approaches infinity. At
the plate, the value of the electric field will depend
upon the initial conditions. However, its change
with time can always be represented by the differ-
ence of the ion and electron fluxes to the plate.
Therefore,

—l—(nu n u)
Cliiee

The average values, n, and ue, can be

represented as follows:

oo

9
KT f E dx
e 0

This was shown previously in equation (8).
Similarly,

o
q
w . KT Ofde
- e
ue«f N fedc—u.e
—00
where

oo i/2
u = (kTe/ZTrme)

Now, from Gauss' Law it can be shown that

E = /€y [17]. Applying this and the two
expressions for ne and u, found previously,
we obtain

2q
_ Kk
ni((J,t) ui(u,t) ~-Nue

o
j E(x,t) dn
(.Y q 0

ot €

(10)
which is the desired boundary condition.

The set of initial conditions will depend on the
particular case being solved and will therefore be
given later in the report rather than here.

Nondimensional Time-Dependent Equations

The set of equations derived in the previous
section will be more manageable in the numerical
analysis if they are nondimensionalized. We
define nondimensional density, D = ni/N; velocity,

V= ui/Vs; distance from the plate, y = x/L;
A
time, T =t/7, and electric field E = E/£, where

N is the undisturbed ion number density, Vs is

the satellite velocity, and L, 7, and £ must be
determined. In terms of these variables, equation
(4) takes the form

v
oD [ 's

aT ~ L

¢}
oy (bv) =0

Now if we let 7 = L/VS, then the previous equa-
tion becomes

oDy, T) avV(y,T)
Ay YY¥ASs Y
ot D(y,T) oy

-V, LD

oy ) (11)

which is the nondimensional continuity equation.

Now consider equation (56). Upon substitution
of the nondimensional variables, it takes the form

\4 2
A
8 8V s BV, 4 % _,

q.
T 98T L oy mi

Now recall that T has been defined as L/Vs'

Making this substitution leads to the form,

Vv v gt L A
Y v 2L [ Hs =
aT Vay <miVSZ>E 0



By defining o = (qu)/(miVsz) where « deter-

mines the amount of effect the electric field has on
ion velocity, we obtain the following nondimensional
form of the energy conservation equation:

WD vy, LD o fiy,m =0
(12)

Similarly, equation (9) takes the following form:

(=]
ﬂé&f & day
A
oE g NL kTe y!

- = D-e
oy £€g

The exponent must be dimensionless, so we define
£ = kTe/qL. Substituting this definition of ¢ into

the coefficient of the term on the right side of the
equation yields qZNLz/(eOkTe). This can be made

dimensionless by defining L = ~ eOkTe/qzn. The

above equation now becomes

[ B, ) dy

A
BEWT) by oy e . (13)

oy

which is the nondimensional Poisson's equation.

Finally, equation (10) must be nondimen-
sionalized. Making the variable substitutions, it
takes the following form:

Recall now that 7 = L/Vs so that the coefficient

of the term on the right side of the equation becomes
(aNL/€y)/&, which is unity since ¢ = kTe/qL and

L = &g kTe/qZN. Now if we let V = ﬁ/VS, the

above equation becomes

A
8E(y,T)

2 [E(y,T) dy'
- Dy, T) V(y,T) -Ve ° ,
(14)

oT

which is the nondimensional form of the boundary
condition at the plate.

The factors L, 7, and £ have all been
defined. Now each can be expressed in terms of
the plasma parameters. We already have

L = W € kTe/qEN. Using this expression for L
in the expression for 7, we obtain
r =+ ¢ kTe/quv;. Similarly, ¢ = '\/NkTe/eo

and @ = kT /m,V 2,
e is

Steady- State Simplification

The equations describing the steady-state
interaction can be derived directly from the time-
dependent equations (it), (12), (13), and (14)
be setting all derivatives with respect to time
equal to zero. Thus equation (11) becomes

d Yy _—
ay [D(y,T) V(y,T;jl =0 . (15)

By dropping the time derivative in equation (12)
we get

A d
a E = V—l
dy
Integrating both sides of this equation with
respect to y we obtain

oo 1
A
[Eqy = ai [ vrav
y \%
or
1
P(y) = 5 {vz(y) - 1} (16)

where P denotes the nondimensional electric
potential,



Equation (13) takes the form

[
A
dﬁ f E dy
dE _ o ¥

ay D-e

or in terms of the nondimensional, electric
potential, P, itis

d*P(y) P(y)
dy = e - D(y) . (17)
Equations (15), (16), and (17) can now be

combined into a single equation for the electric
potential, Notice that equation (15) implies that
DV = constant., This constant is required to be
unity by the boundary conditions on ion density

and velocity at infinity. Then we obtain the solution

D) = 1/Viy) . (18)

Equation (16) can be solved for V{y) to obtain

N 1-2 ¢ P. Replacing V in equation (18) with
this expression we obtain

D = it/ 1-2a P .

This expression can, in turn, be used to replace
D in equation (17) to obtain

P (y) P(y) 1
e ali _ 1
‘ J i-2a P(y)

(19)

>

which provides an equation of P as a function of
y and the plasma parameters.

The boundary condition at the plate given by
equation (14) can also be used in the steady-state

A
solution. Equating 9E/9t to zero, we obtain

oo/\
2 [ Edy
pbv-ve =0 .

The integral of the electric field, in this equation,
is just the electric potential at the origin, or plate,
which will be designated as P,. Making this
subslitution and solving for Py we find that

P, = é— In (DV/V) , (20)

which is the potential on the plate for a given set
of plasma parameters.

The solution of equations (16), (17), (18),
(19), and (20) by numerical methods is simpler
and less subject to error than a numerical solution
of the time-dependent equations of the previous
section. Their solution will therefore provide a
check on the degree of approach to the steady-state
solution of the time-~-dependent equations.

APPLICATION OF NUMERICAL METHODS

Modified Euler Method

Given a differential equation and its solution
al some initial or boundary point, the solution can
be extrapolated to a neighboring point by use of the
Taylor series. This is an infinite series of the
form

1 1
— I — (W —_ T
Yn+1 Yn+Mn1+ 5 Mnh + P Mnh + ...
(21)

where M - (dY/dx) , M! = (d*Y/ax%) ,..., all
n n’ "n n
of which are evaluated at the point X - %t nh,

where h - x X . Although this method is

n-1
accurate if h is sufficiently small, it is not
frequently used in this form since it usually requires
more work than other methods. It is useful,
however, in finding the first few points of a solution,
which, as will be seen, cannot always be obtained
from other methods.

The method used herein is a modification of the
Euler method. To describe it, we begin first with
the Euler method itself, which is the oldest and most
straightforward method of analysis, but is also
relatively crude and inaccurate.



If the increment, h, in the Taylor series
(21) is taken to be much less than unity, the first
two terms will provide reasonably good accuracy.
The solution at the neighboring point then becomes

= h . 22
Yn+1 Yn * Mn (22)

The solution is expanded to increasingly remote
points from the initial point by the process

n+2 n+1i n+1i

Yn+3 - Yn+2+Mn+2h »  ete.

This process is known as the Euler method.

While the first few points can be made
sufficiently accurate by picking h small enough,
as the solution progresses, the error will become
increasingly larger. This occurs because the
differential, Mn’ (the slope of the solution curve

at x ) is used to calculate the solution Y at
n n+i

b . The calculation of Y will therefore be
n+1 n+1

in error by an amount equal to the difference in the

slopes at X i1 and X multiplied by the incre-

ment. Further the total error in the solution

. . . v
Yn+1 is the sum of the error in calculating ntd

and the errors in calculating all previous solutions.
The fallacy in this method is discussed very well

by Scarborough [18].

By using the modified Euler method, the
cumulative error in the previous method is avoided.
Here an average value of the differential is used in
calculating each succeeding point., The extrapolated

solution Yn+1 is therefore of the form

Y :Y+—1<M + M )h (23)
n n+1

where Mn is the derivative of Y at Xn and

M is the derivative of Y at x This method

n+i nl’
requires the use of a less accurate solution of

Y 1 such as equation (22), which is inserted
n
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into the differential equation in order to find the
value of Mn+1' This value is, in turn, used to
calculate a new and more accurate value of Yn+1
from equation (23). The process can be repeated,

using the new value for Yn+1’ until the desired

accuracy is attained [19].

The trouble with the above method lies in the
need to determine the derivatives of each variable
involved. For the complex set of equations derived
in the DERIVATION OF EQUATIONS section of
this report, this is no easy matter. However,
the same general averaging effect can be obtained
in the following way, which, although less accurate,
is more straightforward and easier to apply to the
problem at hand.

First, we observe that the solution Yn | can

be obtained by replacing h by -h wherever it
appears in equation (21). Subtracting the resulting
equation from equation (21), we obtain

Y =Y

2
+ 2 +— M" h®
n+i n-1 Mnh 6 Mnh R

If h is again taken to be less than unity and terms
of order h® and higher are dropped, we obtain

Y =Y

n+1 n-1" 2Mnh ' (24)

The accuracy of this formulation is much improved
over that of the unmodified Euler method shown in
equation (22). This is evident by the fact that the
Euler method neglects all terms in the Taylor
series of order h? or higher, whereas this method
only drops terms of h® or higher,

The extension of the above method to partial
differential equations is rather straightforward,
although stability is a much greater problem here,
and some care must be exercised to ensure that the
solution behaves in a stable manner [20].

The partial derivative of Y with respect to

x at x  and t has the form
n k

<8Y> _ Yn+1,k'Yn_1,k 25)
0X n 2AX ’ (




which is of the same form as equation (24). It
would at first appear that the time derivative of Y
could be written in the same form. However, this
would require the storage of three arrays in the
computer, Instead, the following form has proven
to be more useful:

1
oY\ nktt T2 Ytk Ynotk
ot B At :

(26)

Here, the second value in the finite difference has
been averaged over two increments within the same
time frame. This formulation will be stable pro-
vided we choose At according to the relation

At = Ax/u (27)

where u is the characteristic velocity involved.
This is equivalent to requiring At to be smaller
than the time required for a quantity to cross the
Ax grid [21].

For the solution at a boundary where n = 0
and, therefore, the subscript (n-1) has no
meaning, we require the less accurate forms,

8Y - ?n,m;f Yo,k (28)
ot N At
n
and
Y -Y
<9_3£> . _otlk Tnk i (29)
JX AX

which are based on the unmodified Euler method and
will, in general, be used only for the first two terms
of the solution.

Finite Difference Equations

The numerical equations can now be formulated
by applying the appropriate relations in the foregoing
section to the equations developed in the DERIVA TION
OF EQUATIONS section., Before going on, however,
it should be pointed out, as in the Modified Euler
Method section and as is apparent from equation (25),

that the modified Euler method cannot be used to
find the first two points of the solution. Two sets
of difference formulas will, therefore, be required
for any given equation, The first set will be based
upon the relations (28) and (29) and will be used
to find only the first itwo points in x for each time
frame. The solution at all other points will be
found from the second set of equations, which will
be based on relations (25) and (26).

First, consider the steady-state equations
given in the Steady-State Simplification section.
The form of the potential is given by equation (19)
which we repeat below:

d*P(y) _ PO) __ i

. (19)
dy Ni-2aDP(y)

For this equation, the accuracy of the unmodified
Euler method given in equation (22) was found to
be sufficient. An extension of equation (22) to
the sccond derivative yields

Y - +Y .
dzz _nt+i ZYn n-1 (30)
ax® Ax? ‘

Applying equation (30) to equation (19) we find

P 2P +P P
ot “-——n—"l_-e“_ix/“i_zapn .

Ay?

we obtain

vi
solving for Pn+1

P’Jn+1 = zpn - Pn—i

p : -
+Ayle Mo AYYANL - 20 P,
(31)

which will provide a solution for the potential at all
spatial points, with the exception of the first two
at the origin. The ion velocity can be found from
equation (16):

P(y) = —— [vz(y) - 1] . (186)

2a

Solving this equation for V and writing the variables
as functions of yn, we obtain,

11



Vn='\/1—2a Pn . (32)

From equation (18) we have the following relation
for density:

D () = /V () (33)

Finally, the steady-state potential on the plate,
needed to give the solution the correct magnitude,
can be found from equation (20), which written as
a function of y, is of the form

P, = —; In (Dy Vo/V) . (34)

The equations (31), (32), (33), and (34) can
now be programmed for a numerical solution to the
steady-state case. This program is given in
Appendix A,

We consider now the time-dependent cquations
given in the Nondimensional Time-Dependent
Equations seclion of this repori. For convenicnce
we repeat equations (11), (12), (13), and (14)
below:

8D (y. T) OV(y,T)
pp D, D)
D
_V(y,T)a—_%y;:D— -0 "
BV, T) _V(y,T)M+a }%(y,T) =0
at 9y
(12)
A
) J E(y,T) dy
@—%’;’l} - iy, -V 1
A
) 2 [ E(,T)dy
80T py Ty vy, T) - Ve

oT
(14)

Expressing these equations in the difference forms of

equations (28) and (29) we obtain
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Dn!k+1 B Dn,k D Vn+1,k - Vn,k
AT n, k

D -D
n+i k n,k > _
- Vn,k < ) =0 (35)

Vn,k+1 __YR’}S v < Vn+1,k - Yr;,k>
n

AT Ay
+ =
[e% ﬁn,k 0 (36)
A oo‘ ~
A \
_E En’kAY
n+1, k ) n,k_ =D en:y -
Ay T Un,k (37)
and
® A
A A . N
IS -k ‘2‘}_/ En kAy
_mkil ko Ve ™
AT nk 'nk” "¢
(38)

Solving equations (35), (36), (37), and (38) for the
appropriate variables, we find the following set of
eguations:

\" -V
n+i,k n,k
=D —_— e T
Dn,k+1 nk " [Dn,k< Ay )

Vn,l«:+1 a

Ay
E AT
Te kS (40)
A
A A En’kA)
E = + D _en:y A
n+i,k o n,k n,k y
(41)




A

Eo, ket~ B,

- £
- k
2 A
B ZDZJO En,kAy
+ DO,kVO,k—VG AT .
(42)

The above set of equations is used to obtain solutions
to the variables at the plate boundary in all time
frames,

By applying the difference formulations in
equations (25) and (26) to equations (11), (12),
and (13), we obtain

) -b Yn+1,k: Vn-l,k

Pntert ~Pn i
AT n,k 2Ay

D -D
n+1,k n-1,k 1}
- Vn,k 20y =0 (43)

\%

_Vn,k+1_—_ Vn,k v _n+l,k - Vn—l,k
AT n, k 20y

+a E = 0 (44)

where any quantity Wn K is defined as
1/2 (Wn+1,k * Wn—l,k> .
for the appropriate variable we obtain the {ollowing:

Solving these equations

1
Dokt =72 <Dn+1,k+ Dn—i,k>

5 < v nffl_zk‘vn‘izk>
n,k 20y

D

n—1lk> AT

(46)

(Dn+1,k -
+V
n,k 2Ay

1
Vi ket~ 2 <Vn+1,k+ Vn—1,k>

vvn+1,k_vn—1,k

+ Vn,k Ay AT
A
-a E AT (47)
n,k
2 A
), E LAY
]/;:‘ = f\i +\ D e ™Y 2A
n+i,k n-1,k n, k J *

(48)

This set of equations can be used in any time frame
to find a solution to the problem at all points in
space with the exception of those points on the plate.

The above sets of equations, (39), (40), (41),
and (42) and (46), (47), and (48), can now be
programmed for a numerical solution of the time-
dependent problem. This program is included in
Appendix B.

SOLUTION OF CASE |

Application of Equations and
Boundary Conditions

In this first case to be treated it is assumed
that the conducting plate initially has no eleclric
potential., The plate is then allowed to float, its
potential being determined by the ratio of the
impinging ion and electron fluxes. The physical
parameters governing this particular case are listed
in Table 2. The boundary conditions imposed on the
equations for this case are as follows:

a. Initially, the parameters of the undisturbed
plasma will apply at all points in space. On this
basis, the electric field is zero everywhere while
the nondimensional ion density and velocity are both

unity.

b. The ion density and velocity must at any time
go to their undisturbed values (unity) and the electric
field to zero at very large distances from the plate.

c. The electric potential on the plate is given by

the relation in equation (34) for the steady-state
equations, and the electric field at the plate is given

13



TABLE 2, CASE 1 PARAMETERS
Symbol Parameter Value
_ Altitude® (km) 200
N Ion-Electron Densitya (m™3) (3-50) x 1010
T, Temperature™ (K°) 450-800
m, Average Ion Massa (Amu) : 24
u Average Electron Velocity]O (km/ sec) 43,928
A Satellite Velocity™ (km/sec) 7.780
L Debye Length]O (cm) 0,276
£ Potential Factor]O (volt/m) 24,973
- Time Factor” (sec) 0.3548 x 107¢

a. From Table 1
b. Calculated Values

at any time by equation (42) for the time-
dependent equations,

To determine the other parameters, such as
nondimensional electron velocity, Debye length, etc.,
we must refer to specific values of the plasma
parameters given in Table 1. With this information,
the values of the nondimensional average electron
velocity (V), Debye length (L), characteristic
time (7), nondimensional potential factor (&),
and a factor that determines the effectiveness of
the electric body force on the ions (a), can be
determined from relations given in the Nondimen-
sional Time-Dependent Equations section. These
values are given in Table 2 along with the data from
which they were calculated,

The steady-state program (Appendix A) is
relatively simple, and, in principle, it can be made
as accurate as desired by properly choosing the
increment size, allowable error, and the magnitude
of the assumed potential. Accuracy of more than
four significant figures is unnecessary here, how-
ever, since the general behavior is important and
higher accuracy would not visibly alter plots of the
data. This is the more accurate of the two pro-
grams and should certainly be considered to give
more reliable steady-state values.

14

The program for the time-dependent solution
(Appendix B) is considerably more complex, and
an analysis of its accuracy is not so straighforward.
Since it solves the partial differential equations,
it has finite differences in both time and position.
As a result, the error, which would normally be
associated with a finite difference treatment of
ordinary differential equations of one variable, is
compounded by the second difference relation,

This is further complicated by the restriction
equation (27) places on the ratio of the increments
of the two independent variables in order to attain

a stable solution, This ratio was found to be
extremely critical. It should also be noted that,
because finite differences are used, the solution
consists of small step-like increments rather than
a continuous curve. The consequence of this can
best be seen by taking the electric field as an
example. Once the zero boundary condition far from
the plate has been approached to within a critical
value, the next solution step, rather than going
smoothly to zero, crosses over into the positive
region. Zero is missed because it is located only
a fraction of an increment from the last step in the
solution., However, once the electric field becomes
positive, the solution becomes unstable and grows
at an increasing rate.




The above effect is strictly a result of using
finite difference approximations and has no physical
foundation. However, to prevent its occurrence,
it was necessary to force the electric field to go to
zero whenever this situation took place. While this
may seem arbitrary, it can be argued that this
truncation does not affect the solution appreciably
since the field is very close to zero whenever the
instability occurs.

Case | Results

In the discussion to follow, the term steady-
state will refer to the solution of the steady-state
equations of the Steady~-State Simplification section,
while the solution of the time-~dependent equations
of the Nondimensional Time-Dependent Equations

section will be described as asymptotically approach-

ing equilibrium (hereafter referred to as quasi~
equilibrium).

The plots of the quasi-equilibrium and steady-
state electric potential given in Figure 2 are seen to
be in very good agreement. The data points given
in this figure are the results of the numerical
solution of steady-state equations (31), (32), (33),
and (34) where the curves result from the numeri-
cal, guasi-equilibrium solution of time-dependent
equations (39), (40), (41), (42), (46), (47), and
(48). The quasi-equilibrium values occur at
t = 1.42 us and we use the standard definition
Py/e for sheath thickness. Hence, the quasi-
equilibrium sheath thickness at 200 km is found
to be 0.33 cm.

———— QUASI-EQUILIBRIUM POTENTIAL
X xx XX STEADY-STATE POTENTIAL

sheath
\ (i"ckness
) |
H
N
2 —

| ™
I
!

o ' 2 3 L) 5 3 7 L]

NONDIMENSIONAL ELECTRIC POTENTIAL (-P)

NONDIMENSIONAL DJSTANCE FROM PLATE (Y)

Figure 2, Spatial distribution of electric
potential at 200 km,

The response of the ions to the electric field
can be seen in Figure 3, which shows the develop-
ment in time of both the ion velocity and density,
along with the steady-state solution. At t= 1.42 us,
the time dependent solutions (denoted by curves)
have essentially reached their equilibrium values,
and the discrepancy between the quasi-equilibrium
curve and the steady-state solution (shown as data
points) is attributable to round-off error and the
relatively large increment size used. This will be
discussed in more detail at the end of this section.

From the steady-state continuity equation we
have the requirement DV = 1 everywhere in space.
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1= a0 STEADY-STATE VELOCITY ~ ®eeses
190 /1 T JIME-DEPENDENT DENSITY  — — - —
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Figure 3. Ion density and velocity distribution

in space and time at 200 km.

Therefore, as a check on the accuracy of the
numerical solutions, the quasi-equilibrium flux

and steady-state flux at the plate (y = 0) and at

the edge of the sheath (y = 1.2) were compared
with unity. The quasi-equilibrium and steady-state
flux differed from unity by 0.000579 and 0. 0000152
at y =0 and 0,000505 and 0.0000520 at y = 1.2
respectively, thus showing the solutions to have good
accuracy, with the steady-state solution being
slightly better as expected.

The growth of electric charge on the plate,
given in Figure 4, indicates the charge behavior
relatively early in the interaction, which primarily
is due to electrons at this point. Initially, all
electrons impinge on the plate and deposit charge
there, but as the plate potential becomes more
negative, increasing numbers of electrons are
repelled and the rate of charge deposition decreases.
The influence of the ions cannot be seen in the early
stages of the interaction shown here. However,
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Figure 4. Growth of surface charge on
plate at 200 km.

they have a very pronouned effect that takes place
much later, which will be discussed in the following

chapter.

Figure 5 shows the development of the electric
potential in time and space and illustrates very well
the approach of the solution to an equilibrium value.

An instability that occurred very early in the
numerical solution of the time-dependent electric
field is shown in Figures 6 and 7. This effect is
strictly the result of error in the numerical cal-
culations as is indicated by the difference in the
two curves affected by changing increment sizes.
Notice that decreasing the increment size (Figure 7)
confines the instability to a smaller region in time
and decreases its amplitude. In both casecs the
instability dies out in a small fraction of the
relaxation time and is insignificant in the shcath
region at all times.

In Figure 8, the constant density contours in
space and time give some idea of the lag in the
response of the ions. The dashed line represcnts
the position of the 1/e valuc (sheath) in space
and time.

Some additional comments should be made
about the error involved in the time-dependent
calculations. This is a result of both the numerical
method and the computing machine used. Recall
from the APPLICATION OF NUMERICAL METHODS
section that the modified Euler method used herein
is an approximation of the Taylor series wherce
terms of h® or higher are dropped. Hence, to
have good accuracy, the increment, h, must be
made much less than unity. Therefore, in the
present case, AT and Ay must be small, but,
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in addition, we must satisfy the criteria for stability
— given in equation (27). Therefore, for an accurate,

0022 ! — stable solution, we must have AT <Ay << 1.
734 (STEADY STATE -E)
0020 —
e | The above conditions, unfortunately, could not
— . be completely complied with on the particular com-
:2 e ] puting machine used. Smaller increments require
m ool = ] a greater number of iterations, which in turn
g oon — require more computer lime. It was therefore
2 oo s y =50 — necessary to use the rather large increments,
) 0008 : K g B Ay = 0.1 and AT = 0.01.
0006 LV ]
? oo C T The effect of using these increments can be
. R ] seen if we consider the order of the terms dropped,
o P 04 0 08 o 2 4 h3, and the number of iterations. The missing
} TIME (T) terms are on the order of 0.001 in space and
0.000001 in time. The number of iterations
required in space and time are 100 and 400,
Figure 7, Time dependence of the electric field for respectively. Hence, from this source alone,
Ay =0.01 and AT = 0.001 at 200 km. the accumulated error at equilibrium is on the
order of 0.1 and 0.0004 for the two dimensions.
This, coupled with machine roundoff error (which,
using standard error analysis, has an accumulated
value on the order of 0.0001) can easily account
for the discrepancies in the quasi-equilibrium and
0o steady-state solutions.
4.5 L“
— = = smonarycoron |/
s SOLUTION OF CASE 11
—_ / .
5 5 & — Application of Equations and
5 r ire
. 5 B Boundary Conditions
5 \ / This sccond case treats the problem of a plate
P / . that is initially in equilibrium with the strcaming
§ plasma for a given set of physical parameters., The
g 2 / g plasma parameters then undergo a step change.
é / quan" d The time-dependent equations derived in the
3 Qj DERIVATION OF EQUATIONS section are invoked
A / 7 ] to investigate the nature of the interaction that
. / I A e "/_‘ follqu as the plate adjusts to the new plasma
/ y — qq«"“’/ environment.
1 A4 / N
‘ . / / / / Thi robl i wl
7 his problem is described by the same set of
o 7 A time-dependent equations as Case I; namely
i 0 .05 0 .15 .20 .25 30 W35

equations (11), (12), and (13). For convenience,
the physical constants corresponding to an altitude
of 200 km and the steady-state distribution of the
Figure 8. Constant ion density contours plasma parameters found in Case I are used as the
at 200 km. boundary condition for this case at t = 0. After

NONDIMENSIONAL TIME {T)

17



the step change, the physical constants and plasma
parameters corresponding to an altitude of 3000 km
are used (Table 3). We still require that at an

TABLE 3, CASE I PARAMETERS

Symbol Parameter [ value |
= | Altituge® (km) Tsa00 |
N Ion-Electron Densitya (m‘3) 7% 10°
T, | Temperature® (x°) 4000
ml. Average Ion Massa {Amu) 4
u Average Electron Velocilyb (km/sec)| 96.2
Vs Satellite Velocitya (km/sec) 6.520
L Debye Lengthb (cm) 5.2166
& Potential Factorb (volt/m) 6.6073
T Time Factorb (sec} [ 8.00 x 10j

a. From Table 1
b. Calculitted Values

infinite distance from the plate, the electric field
vanish, the nondimensional ion velocity and density
be unity, and at the surface of the plate, the electric
field be given by equation (14).

The steady-state equations can be used as in
Case I to obtain the equilibrium values of the first
plasma state directly. This will provide the initial
boundary conditions at t= 0 in a form that can be
fed directly into the program for the time-dependent
equations.

The program for the solution of this case, which
is a combination of the steady-state and time-
dependent programs used in the previous chapter,
is provided in Appendix C. Its operation is
described sufficiently there,

Case 11 Results

The curve and data points given in Figure 9
represent the quasi-equilibrium (t = 30.5 ps) and
steady-state solutions for the electric potential
respectively. A comparison of these resulits
shows good agreement between the time-dependent
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Figure 9, Spatial distribution of electric
potential at 3000 km,

and steady-state solutions for this case. Note that
the electric potential has a greater magnitude than
in Case I. Further, we find the sheath thickness
to be 7.3 cm, which is also greater than in Case I.
Therefore the effect of increasing the satellite
altitude from 200 to 3000 km has apparently been
to magnify the sheath dimension.

The time and spatial distribution of the ion
density and velocity are given in Figure 10. The
quasi-equilibrium solutions are represented by
curves and the steady-state solutions by data
points. These parameters show much better agree-
ment than in the previous case (Figure 3). This
is probably because the transition in the plasma
parameters is less drastic. Note that the change
in ion density and velocity near the plate is about
50 times greater than in Figure 3. This would be
expected since we have already observed the electric
field and electric potential to be considerably
greater in this case.

The effect of varying increment size on the
spatial behavior of ion density and velocity is shown
in Figure 11 for T = 0.35. Figure 12 shows the
same effect in time for the ion density and velocity
at the plate (y = 0). Notice that in Figures 3 and
10, the quasi-equilibrium solution decreases at a
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L . slower rate than the steady-state solution. From
o005 see DY 01 DT=001 | Figure 11 it is apparent that one effect of reducing
increment size is to increase the rate at which the
time-dependent solutions decrease in space, thus
tending to compensate for this discrepancy. The
) 0003 — data shown in Figure 11 occurs rather early in the
interaction (T = 0.35) so that the end cffect on the
o002 - quasi-equilibrium solution (T 3.81) must be
extrapolated. However, Figure 12 indicates that
the effect of the decrecased increment size will be
more pronounced as the interaction progresses.
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decrease after an overshoot early in the interaction.
The overshoot of surface charge density, which
reaches its peak value at T = 0.8, is the result of
the electron interaction. The surface charge then
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at 3000 km,

effectively neutralized by the ions. The inertia
of the ions is well demonstrated by this effect.

Figures 14 and 15 give the time dependence of
the electric field very early in the interaction at
various spatial positions. The fluctuations at large
distances from the plate that were observed in
Case I (Fig. 6) are not found here; however,
there is a slight overshoot at y = 4.1 and y = 5.1,
Probably, whether merely an overshoot or fluctuations
are observed depends upon the magnitude of the step
functions used to represent changes in plasma param-
eters. The gradual decrease late in the interaction
is caused by ions, as previously discussed. In
Figure 14 we see, however, that the point in time
at which the electric field achieves its maximum

value varies with distance from the plate. Apparently,
the ions nearest the plate, which are consequently

NONDIMENSIONAL ELECTRIC FIELD - {
b
v
e oy
- +
[ .
.

[x3 o 15
NOMDIMENSIONAL TIME (T}

Figure 14. Growth of electric fieldat y = 0.5
and y= 1.0 at 3000 km.
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Figure 15. Growth of electric field at y = 4.1
and y = 5.1 at 3000 km,

. | |
1.2 . | I i
: ®®® STEADY-STATE
! —— TIME-DEPENDENT .
1.0 . , ,
N ,
! :
| | ! |
k i
.8 + | , ) | ‘
i
! ‘ i \
(T) = 3.81 (QUASI-EQUILIBRIUM) J
6 ! ]

ELECTRIC POTENTIAL [ -P )

DISTANCE FROM PLATE (Y)

Figure 16. Growth of electric potential in space
for transition from 200~ to 3000-km orbit.

exposed to the greatest electric potential, experience
an acceleration earlier than ions located farther
away. Hence the effect of the ions is felt later at
increasing distance from the plate.

Figure 16 gives the spatial dependence of the
electric potential at various stages of the interaction,
thus showing the approach of the solution to
equilibrium.
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DISCUSSION

Summary

To gain some insight into the behavior of the
ionospheric plasma directly ahead of the stagnation
point on a satellite, a kinetic treatment of the prob-
lem was carried out, based on two uncoupled,
collisionless Boltzmann equations, corresponding
to the two ionospheric species considered (ions
and electrons). The formulation of this treatment
of the problem was based on the assumption of an
infinite, flat, conducting plate representation of the
satellite; a uniform ion velocity distribution in time
and space; a Maxwellian distribution of electron
velocity; and an instantaneous relaxation of the
electrons. With these assumptions, the equations
of transport derived from the two Boltzmann
equations and a form of Gauss' law were used to
obtain a set of four coupled differential equations
which can be solved numerically to obtain the
time-dependent plasma parameters.

The [irst case to which these equations were
applied consists of a grounded, conducting plate
orienled perpendicularly to the plasma flow, which
is allowed to float electrically at time t;. The
reaction resulting as the plate moves toward an
equilibrium state with the plasma is very similar
to the lype of reaction that occurs on board satellites
when the potential at some point on the surface is
periodically pulsed off and on by instrumentation,
such as an emissive plasma probe.

The second case, for which a solution was
oblained, treats the problem in which the plate is
initially taken to be at some precestablished
equilibrium state. At time t;, the plasma
parameters undergo a step change and a time-
dependent interaction follows as the plate moves
toward a new equilibrium state compatible with
its new plasma environment.

This case is particularly applicable to the
behavior of the sheath region ahead of a satellite
as it passes over the terminator; through a radiation
belt or anomaly; or, within certain limits, undergoes
a change in orbital attitude [22].

Conclusions

The results of the two cases discussed above
enable us to state the major events and parameters
of the time~dependent interaction and to draw the
following conclusions:

a. The plasma sheath thickness changes from
0.33 cm at 200 km to 7.3 cm at 3000 km, At
200 km the sheath grows from zero when the plate
is grounded to its equilibrium value in 1,42 us,
whereas the transition from equilibrium at 200 km
to an equilibrium state at 3000 km requires 30.5 us.
This would indicate that the relaxation time is
inversely proportional to the plasma flux to the
plate (both satellite velocity and plasma density
decrease in the transition from 200 km to 3000 km).

b. When plasma parameters were varied step-
wise, an initial overshoot was observed in the re-
sponse of the plasma sheath and surface change on the
plate. This overreaction of the plasma occurred very
early and dampened out quickly, permitting the plate
to continue toward equilibrium in a steady manner.

c. One further event, which occurred before
equilibrium was altained, is worth noting. The
surface charge on the plate reached a peak negative
value, 6.4 ps, after the step transition from param-
clers at 200 km to those at 3000 km initiated the
interaction. From this point, the surface charge
moved toward an equilibrium value of less magnitude.
This cvent illusirates the delay in the response of
the ions and their influence on the interaction.

d. The equilibrium potential on the plate was
found to be 0.06 V at 200 km and 0.46 V at 3000 km,
This is scen to be in good agrcement in both form
(¢L - kTe/q) and magnitude with the prediclions

of YA, L. Al'Pert et al. [23].

From the preceding discussion, it can be
concluded that the general behavior of the plasma
sheath directly ahead of the frontal stagnation point
on a satellite is very close to that expected from
physical arguments. In addition to confirming this
general, qualitative behavior, the study presented
here produces a more exact, quantitative description
of the interaction that can be applied to many prob-
lems with interesting and physically meaningful
applications.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812, October 9, 1969

124-09-00-00~62
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APPENDIX A

A PROGRAM FOR THE STEADY-STATE SOLUTIONS

This program is written specifically for the
steady-state equations of the Steady-State Simplifi-
cation section in the text. To facilitate a clear
explanation of its operation, it will be divided into
six parts,

The physical parameters and constants in the
first portion of the program will determine the exact
physical problem to be solved. Therefore, the
physical plasma parameters, temperature (XT),
average ion mass (XMAS), and satellite velocity
(XU), must be properly assigned. The remaining
parameters will be calculated from these, and the
physical constants do not change.

The second portion consists of only two state-
ments. The first calculates the electric potential
on the plate, and the second determines how closely
this value must be approached.

In the third part of the program, a small
potential, VX1, is assumed to exist far from the

22

plate. This potential, VX1, is defined by the first
statement, The following statement defines the
slope at this point, and the last statement calculates
the potential at the next adjacent point,

In the fourth section, the potential is calculated
at points increasingly near the plate. When a cal-

culated value exceeds VX0, the process is terminated.

If the difference between the solution and VXOo is
DELT or less, the program goes to the next secti~n;
if not, VX1 is changed slightly, and the process is
repeated until the proper value of the potential at
the plate is achieved.

The next section merely reverses the potential
and increment arrays so that the value at the plate
becomes the first component,

The last section calculates the values of ion
density (XN} and velocity (W) at each point and
prints out the results.

-
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STEADY-STATE PROGRAM

NzZ3
NMco1
A EE RS R R EE RS E R R ESEEE AR EIRE R R RIS EIREIESRE RS RS

PHYSICAL PARAMETERS ANDO CONSTANTS

Kk BEXRBE ARk Tk kR EE R B h ok Rk Wk R Rk Kok ok Rk Bk k Bok Rk Fk Kk R
XT=1000.
XMASZ28.#11.67252%10.%*{(-27))
XU=8.0450%10e%*3
EM=Z9.1021*10*x(-31)
XEZ1602%1D43x(~19)
XK=1e38%x1N0ex3{-23)

XYZZUXK2XT)}/ €(2.)*(3,.14159)%EM)
UEZSORTIXY2)

Uz (ueE/sZ xuy)
EPSX=XK*XT/Z(XMAS*{XU=*x2))

RERXSEBARERE R KR AR KRR E SRR F IS R R A F e Ak Ak kk Rk Bk bk kk ¥k X Kk X

VX0 IS THFE POTENTIAL ON THE PLATF

L L R L O O T Ry
VXO0=(.5)*ALOG(1.7U)
DELT=.0G01

LA EEEZ RS R R RS E AR RS EZ R LRSS RS RSN SN RS EE R RIS RFE YR

VX1 IS SMALL POTENTIAL ASSUMFO AT SOME POQINT IN SPACE

A ko 2k ok ok Aok Rk ok ok ok K ok ok ok ok kok kok Sk ok ok B ok ok Rk kok Rk Wk Kok ek kN R
VX1=z-.00001

SLOPX=SART(1a+EPSX)*VX1

Byz-.1

YINC(1)ZDY

YINC(2)=DY

CONTINUE

Vi1)=vxl

V(2)ZSLOPX#DY+V (1)

A RS E R RS R R L R AR R R E RIS A R A E R R RS RS RS R R IR R E T R R RS R

THE FOLLOWING PROGRAM EXPANDS THF SOLUTION SACK TOWARD
THE PLATE UNTIL VXC IS REACHEN.

W R KK A K Rk R K ok ke Kok ok ok Kk Rk Rk Rk Rk ko Rk Rk R Kk Rk Kok KA

I=1

10 CONTINUL
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(@]

15

16

20

30

4Q

338

70

YINC(I+21}=DY
VII+2)Z2xVII+ 1)+ (DY > 2)EXP(V(I+1)})-{(0Y*x2)
1/SORT{14-2.*%EPSX*V(I+1})-V(I}
DIFX=ABS(VXO-V(I+21))
IF(DIFX-DFLT)Y 30+30015
CONTINUE

DIFX=VXO-Vv(I+2)

IF(DIFX) 16e1692C

CONTINUE

Iz1+1

GO T 10

CONTINUE

VX1=VX1-.000C05

G0 TO0 5

XXX TR B R B R Bk Tk ok ok Bk Rk kg kk ke okak bk Kk Ak k kk Rk Rk kok ok Kk Kk k¥

ARRAY IS REVERSED TO MAKE v{1)=vxn

WAk Mk ok 3 ok dk ok ok Kk X e ok ok dkoak o ok ok ok ok ok sk ko kK Aok Kk Kk Rk Rk Kok Ko k& kok kK
MMzI+2
MIDZ-(MM+1) /2

D0 40 Jzl+MID
KZMM+1 -
TTZYINC(D)
YINCC(JIZYINCI(K)
YINC(K)IZTT
T=-¥(d)
VEJ) Vv (K)
VIK)ZT

M=MM

AR R AR R SRR ERELEEE RS I E LRSI RELES RS RS ELESELIESZELESEESE]

ION DENSITY AND VELOCITY ARE CALTULATED

EERE AR R AR AR R AR KRR KR N R AR KR KRR Rk Ak Rk Bk Ak Bk ke ¥k %
D0 6N I-1.M

XN(II-1a/SORT(1,-2.+#E2S8X V(I ]))

WI)Z1 e/ %N(T)

WRITE(NSsT7O) (TeYINC(T) «VITI o XN(TYeW(I)rTIZ1 sMshNM)

FORMAT (6 X* INCREMENT POTFNTIT AL REL . DENSITY
1 RELe VELOCITY*///7/(16+F9.543c12.7))

STOP

END




APPENDIX B

A PROGRAM FOR THE CASE | TIME-DEPENDENT SOLUTION

The program that follows is designed to solve
the time-dependent equations of the Nondimensional
Time-Dependent Equations section in the text. It
is divided into six sections.

The first section contains the various constants
that determine step size and allowable error. Of
particular interest are the constants DY and DT,
which determine the space and time increment sizes
respectively. Other constants of interest are: M,
which determines how many values in the space
curves are printed; MM, which determines the
array size; DELP, DELD, and DELV, which are
the allowable errors in the potential, ion density, and
ion velocity solutions respectively; and LL, which
determines how many of the time steps will be printed
out.

The second section consists of the appropriate
values of the plasma parameters and physical con-
stants. The values of the factors used to non-
dimensionalize the variables are also calculated in
this section and printed out. The names of these
values are self-explanatory.

The third section sets the initial conditions of
the electric field, ion density, and velocity. These
values form the first set of variables in time and are
fed directly into the fourth section, which is set up
to calculate the first two values of each time array.
As pointed out in the APPLICATION OF NUMERICAL
METHODS section, the first two values cannot be
calculated by many of the more accurate numerical
methods.

Section five contains the bulk of the program.
Here the remaining values of the array are calcu-
lated and tested for convergence in space. The first
value in the electric field array is then printed, and
the solution moves to the next time increment.

Section six contains the test for convergence in
time and all the print statements for the variable
arrays. Every LLth time step is printed out, plus
whatever step the solution converges on. The con-
vergence criteria in this section will not be satisfied
unless E, D, and V have reached certain minimum
differences in time.
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CASE 1. TIME-DEPENDENT PROGRAM

DIMENSION E(10092)9D{100¢2)sV(1N0e2)+P (100}
FRAKREEE AR B A R E R R B AR R AR A RN AR IR AR R R KR AT R R Rk Kk hk hk Kk %

SFCTIGN 1

IR R IR RIS RIREE RIS SRR RIS RIS AR R R RIS RIS R
N6

DY=-.C1

DT=z.001

Mz10

MM=-1C0
BELZ1e%10e**(~-8)
JIMZG

ogLPz. 00001
DIFPZDELP+1,
DELD=.Q00001
pELV=-.000001
KK=1

JJd=1¢

JzdJd=-1

LL=5

L:U.

ES1=C.

E£S0=C.

W1l

IR R EEZ R IR IR RS EE R RS R R RS R RS R 2RSSR R RS R R R IR LR SR EE ]

SECTIAN 2

EEBEEE KRR RRERFF AR IR AR AR KR AR KRN EF RN AR AR KR KRR KX A X £k 3
XK=1.38054*10.*%(-23) -
T=800.

EM=9,1091*%10.**(-31)

XIMZ24 0% (1 a67252%10.%%x(-27))
VSZ7.780*10.,%%(3)
EVRZIXKxT)I/Z{(2.)*%(2,14159) *xEM)
VAZSGRT{(EVR)

ALPHAZ (XK*T) /(XIM*(VS*=%2})
Uz (VA/VS)

XNN=-Se*1Cax*x{11)
EPS=Z8,E5uU2#10.%%x(—-12)

AT 16021 %10 %% (-13)
XYZZEPSeXK2T/{ (Qx%2) xXNN)
XLZSBRTIXY2)



SQUIGC=@*XNN*XL/EPS

DTT=DT*XL/VS

DX=DY=*XL

WRITE(Ne1) XLsSQUIGeDTT+OXeVA
1 FORMAT(Z2X s SHXL - 9o E1Ua5e 3X o6 HSOUIG s E14a513X e4HDTTSoELBLSe IX o3HOX T »
1E14.%5903Xe3HVAZ¢E£14.5) '

e N T T E T,
SECTIAON 3

I e e T ]
DO 10 Iz1leMM
E(Is1)=0e
D(Isldz=le.

10 v(Is1)=1.

MR EE IR IR RC RN R R R R SR RN PR AR R R AR KR AR AR AR KR AR KR Bk R
SECTION 4

LR O T Ty ]
20 E€(192)ZE (1wl )+ (D019l ) xV(1s1)-UrEXAD (P . *ES1%DY }) =0T
22 CONTINUE
DC192)z20(1e1)+D01o1)*(V(291)-VI1lsp1))*(DT/DY)+V(1e1)+(D(2,1)-011,1)
11*(DT/7DY)
VE192)SVI{1el 34Vl 1) #(V{2s1)~V L1 ) =({DT/DY)-ALPHA»E(1+1)*DT
E1zE(1¢2)*(,0001)
EEZE(192)
I=1
IF(KK-2) 2U+26926
28 CONTINUE
APROX=0,.
GO TC 28
286 CONTTNUE
APROXZES1+(ES1-ESC)
28 CONTINUE
ES2=-ABS(APROX-EE)
FlI+192)ZE(Te2)+(0(T92)-EXP(ES24DY)}*DY
EEZEE+(E{T+292)-E(1+2) Y/ 2. +F(T+1,47)
I-I+1
OCT+2)=(00TI-1+1)4D0I+2 1))} /2.4(NUTo1)x(VIT+141)-VII-191))4V(Ty1)*
(D(I+1+1)-B(I-1+1)))*NT/(2.%NY)}
VITe2) o VII-1e 13 4VII+1 1)) /2.+V(Te ) (VII+1y1)-V(TI-1+1))*DT/
(P e*0Y }-ALPHAX(E(T-1+13+E(T+1,1))*CT/2.
30 CONTINUE

LA EE RS R LR R ESEEEEEEEEREE R RS ELIEIERER SRR LI RETEERSEEER]

—

—

SECTION &

SEREER XA ARK T RK AR EE R R A KRB BT Rk KRR AR R A R XK AR AR Sk bk KK KK E
£ES2z-ABS{(APROX-EF)
E(I+192)ZE(TI-142)42.%(D(T92)~-SXP(FS22DY) )Y
TESTZE(I+1e¢2])

IF(TEST) 3493432

32 CONTINUE
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E(I+192)=0.

34 CONTINUE
CECEE+(E(I+102)~FElI92))/2.4E(I+1¢2)
IZI+1
TESTZE(I+1el)

IF(TEST) 36+35+36

35 CONTINUC
D(Is2)C1e
V(Is2)Z1l.

GC TO 38

36 CONTINUE

ClIe2)z(D(TI=101)+D(T41913) /24 (DTl )2 (ViTI+12)-V(I-151))+VI(TIs1l)*
1(D(I+141)-D(I-11))1)3DT/(2.%DY)
VIiIe2)Z(VII=191)4V(T+191))/2.4VITo1)a{V(I+1lsy1)-VII-1+1}3)%0T/
1(2.%x0Y)—ALPHAX(E(I~1¢1)+E(I+1y1))=xDT/2.

38 CONTINUE
NNZMM-1
IF(I-NN) 4De50,5C

4C CONTINUE
GO TO 30

SC CONTINUE
E(I+192)-FE(I-192)+2.%(D{TI+s2)-EXP{SS2*DY))*DY
TESTzZE(I1+1+2)

IF(TEST) 56¢560¢54

4 CONTINUE
E{I+1+2)=0.

56 CONTINUE
FEZEF+(E(T+192)-E(192))/2.45(1+1+2}
D(I+1e2)=D(I+2)

VII+192)ZV(I2)

MM=T+1
DIFA-ZA3S(APROX-EE)
DELT=-A3S(EE=*L.TO1)
IF(DIFA-DELT) 7070967

0 CONTINUE

DIFA-{APROX-EE)
APROXZ-APRNX-DIFA/UW
WoW+ S+l

I=1
EEZE(1+2)
GO TC 28

(03]

70 CONTINUE
WZlet%
WRITE(NSIBD) KKeE(1+2)
AQ FNORMAT(6X+22HELECTRIC FIELD AT TIMEs2XeIle2XeTHE(1+2)=+E14.5)

AEEEEE KR AR BE BRI R N Rk AR R E AR AR RF ARk KR AR XX R BE AR Sk Rk Kk Sk XK ¥

SFECTION €

AR R R Rk Ak AR R R R B R R KRR KK TRk kR ek Rk ok ek Rk Kk Rk ok Rk Rk F ok kX
LZL+1
IF(L-LL) 85+85¢84

34 CONTINUE



DIFP-ABS(EE-ES1)
DIFD=ABS(D(1+2}-0(1+1))
DIFV-ABS(VI1+2)-VI{1el))
IF(DIFP~-DELP) 300,300y 85
200 CONTINUE
IF(DIFD-DELD) 310+ 310985
310 CONTINUE
IF(DIFV-DELV) 90+30+85
85 CONTINUE
JzJd+1
IFtJ-JJ) 160+380+30
aC¢ CONTINUE
J=0
WRITE{N, 100) KK
17C FORMATU(//2X+25HPLASMA PARAMETERS AT TIME+2Xs I4)
NN-MM-—-1
SUMZEE
D0 110 I=1wNN
PI)ZSUM=DY
SUMZSUM=(F (T +2}+E(I+192))/2.
IF(SUM) 110+110.104
104 CONTINUE
SUM=Z(Ca
110 CONTINUE
PIMMIZP{NN)}
WRITEINS120) (I9sP{TI) eIl MMM}
170 FORMAT(///2X 9OHPOTENTIAL//(6X1I5¢C 1679169 E16.79I62E16.79I69F16a7y
1T6+E15.7))
WRITE(NY130) (IoE(Ie2)vIZ1eMMsM)
120 FORMAT(//7/2X»14HELECTRIC FIFLD//(EX1I69E16eT7 9 I€+E1Ba79I09F 167 ¢IFy
1E1647916¢ef16.7))
WRITEI(N140) (I+D{1s2)sI=1sMMsM)
14C FORMAT (///72X+s18HION NUMBER DENSTITY//(6X9I6+C156.72169E15e7916eF16.7
1+169516.79169E16.71))
WRITE(N#150) (ToeV{Ie2) I eMMyM)
150 FORMAT(///72Xv20HAVERAGE ION VELOCITY//(6XsI6+E16.7¢I6+E16.7+T60
1E16e7915¢F16e79169E16.7))
WRITE(NS155)
155 FORMAT(//77)
IF(L-LL) 160¢160+156
156 CONTINUE
IF(DIFP-DELP) 3200320, 330
220 CONTINUE
WRITE(Ny 215)
315 FORMAT(3Xs 11HP CONVERGES/)
JIMZJIM+1
230 CONTINUE
IF(DIFD-DELD) 3u40e340435D
240 CONTINUE
WRITE(N» 345)
I4S FORMAT(3X+11HD CONVERGES/)
JIMZJIM+1
I5C CONTINUE
IF(DIFV-DELV) 360¢360,160
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CONTINUE

WRITE(Ns 365)

FORMAT (3X»11HV CONVERGES/)
JIMZJUIM+]

IF(JIM-3) 160,190+130
CONTINUE

DO 180 I:=1+MM
EC(Iv1)ZE(I2)
D(I+1)=D(1+2}
V(Iel)ZV(TIs2)

ESO=ES1

ES1=FE

EEz0e

KK-KK+1

JIMz=C

€0 TO 20

CONTINUE

WRITE(NL20D)

FORMAT {2%9 22HEQUILIBRTUM CONDITIONS)
SToP

END



APPENDIX C

A PROGRAM FOR THE CASE 11 TIME-DEPENDENT SOLUTION

The program in this appendix is designed to
solve the general time-dependent problem treated
in case II. In this form, the program can solve the
time-dependent equations developed in the
DERIVATION OF EQUATIONS section for any of
the various applications pointed out in the DIS-
CUSSION. The program is divided into two sections
for the following discussion.

The first section essentially consists of a
revised form of the program presented in Appendix
A. Here the variable arrays, which were one-
dimensional in Appendix A, are written in a two-
dimensional form so that they can be applied
directly to the time-dependent portion of the pro-
gram in the form of initial conditions. In this first
section, the physical constants and plasma param-
eters constitute the initial conditions, or the initial
plasma state. The constants and plasma parameters
at the first of section two will constitute the final
plasma state.

The second section of this program is almost
identical to the program presented in Appendix B.
Therefore, we will point out and explain the
differences in the two here.

The form and purpose of the various constants
are the same here as in Appendix A. However, the
values of the plasma parameters have been changed
in order to formulate the problem described in
the SOLUTION OF CASE II section.

The part of the program referred to as section
two in Appendix B has been omitted here. This
section provided the boundary conditions, which
are calculated in section one of this program,

The remainder of the program is identical to
that presented in Appendix B and will therefore not
be discussed further here.
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177%

iri1g

CASE I, TIME-DEPENDENT PROGRAM

OTMENSION YINC(IOQOD)
DIMENSION E(1IG0C»2)oD0100C2)s VIINED21,P(IOCC)

LA EEEE ES R R SRS REEELAE SRS R RSS2 RERS RS R AR AR E I RIS RESE Y

SECTICON 1

LA EEEE RS EE AL RS E R S A R A R R SR L EE R R R T R R E S RT RESEEE S S LN

PLASMA STATE 1 PARAMETERS

XXz

Xttt
1o~ o

0
C
XUzZT778x1T oxx{ 3)

XT=-8LC0.

EM=-9,1031%10.%x(-31)
XE-1.602#10e*%(-19)
XK=1a38%1Cex*(-23)
XMASZ24%(1.,57252*10.*%x{-27))
DELTz.001
EPSXIXKeXT/{XMAS*{XU*%x72) )

0oc-l.

V0zl.

XYZZ(XK=XT)I/ ((2.)1*({3.141539)%x"M)
UEZSORT(XYZ)

Uz (UE7/ XU)

VXO-(5)*AL0G(1.7U)

VX1=z-.,00C0S5

CONTINUE
SLOPXZSART (1 .+EPSX)I*VYX1

DY-.1

DO 1001 I=1.110

PLIN=D.

CONTINUE

P{1)zvX1

P{2)=SLOPX*DY+P(1)

I-1

CONTINUE

YINCU(I+2)=DY

PUI+Z)Z2.#P{I+1)+(0Y*+2)+EXP(P{T+1))-{(0Y**2) /SORT(1,-2.%FPSX

1P (I+1))-P(I)
DIFX=ABS(VXO-P(I+?))
IF(DIFX-DELT) 1C30,1030.1C015



1015

1nle

1r20

1040

1rsl

12

CONTINUE
DIFXZVX3-P(I+2)
IF(DIFX) 1Cl6+1C015¢1N2°0C
CONTINUE

IZI+1

GO TO 1010
CONTINUE
¥X1z=VvX1-,.0000C1
G0 TC¢ 1005
MMZI+?2
MIDZ(MM+1) /2

DO 1040 Jz1.MID
K=MM+1-J
TTZYINC(D)
YINCUJ)IZYINC(K)
YINC(KIZTT
T=P{J)

PLJIZP(K)

P(K)ZT

DO 1760l TI-1eMM
V(Iel)=SART(1.-2.*EPSX*P(TI))
DEI+1)=1a/7V(Iv 1)
WRITE(Ne12) KK

FORMAT(/ /72X e 25HPLASMA PARAMETERS AT TIME«2XeT4)

Mk ko bk Rk K Rk Rk Sk R ok ok ok kR k ko xRk kR ok ko kok ok Rk kk kg kk kExE

SECTION 2

LA RS EE R E R RS RIS R RS R R 2R LR R RS ER RIS RS L ELEEELE SN ]

PLASMA STATE 2 PARAMETERS

0Yz=1C.
DT=.CC1
MM=B800D
DELZ1a*10o*x(-8)
JIM=C
DELPZ.CCS
DELD=-,. 30001
DELVZ.OCCO0L
L=0

LL =5

KKzZ1

JJz1n

J=JdJ-1
£S1=C.
ESQ=C.

WZle

XKZ143805U%)10, s%x(~-23)
T-400C.
EM=3,1031%10.*x*x(-31)
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XIMZU4,.*{1.,67252*10.%xx{-27))
VS=5.520%10.,*x(3}
EVRZ(XK*T) /(0 (2.)%(3,14159)+EM)
VAZSCERT(EVR)

ALPHAZ (XK*«T) /{XIMx(YS%*x2))

U= {(VA/VS)

XNNZ7e#10, 2% (9)

EPSTZ8.85u2%]1Ca*x(-12)

016021 #%10.,2*(-19)

XYZZEPS*«XK#T/( (Q9%%2) xXNN)

XL=SGRT(XYZ)

SQUIG=Q*XNN*XL/EPS

DYTT=OT=XL/VS

DX=DY*XL

WRITE(Ns1) XLeSQUIGeDTTeDX
1 FORMAT(Z2Xe3HXL -9 E1l .59 3Xs6HSAUIS =9 E1U8aSyIX v HDTT o E1 4 Sy IX«IHOXZ
1E14,5)

WRITE(NS16) (IsP{I)sTT1eMM M}
16 FORMAT(///2X +QHPOTENTIAL// (66X eI0 oF 1647 9vI69FE1 6. T2 161579 I6rELCLT
1I6:£16.7))
I=1
E(Is1)z-(P(2)-P(1}))/DY
DO 10 IzZ2eMM
E{Iel) = (P(I+1)-P(I-131)/(2.%0CY)
10 CONTINUE
WRITE(Ne17) (I sE(TIelleI=1yMMeM)
17 FORMATU/ /72X s 18HELECTRIC FIFLN//(6EX9I69FE 167 ¢1C0E1Ge7eI69E 16,7916
116791695167}
WRITEINs18) (I1eD(Iol)yIzlyMMeM)
18 FORMAT(/ /72X e18HION NUM3IFR DFNSTTY// (EXe 6o 16 7 2I69E16.T79I6¢F16.7
1eI6vE16.7916sE1647))
WRITE(NS19) (IeVI(Inl)sIZleMMeM)
19 FORMAT (/7 /772X ¢20HAVERAGE ION VELOCITY//(6X9sI6eE 167 ¢lbsE16aTrIG
1E16e72169E16e7¢IE9E16a7))
WRITE(N,s 1200)
1700 FORMAT(/ /7))

20 E{122)2E (1wl 3+ (0(2 21 )%V (1y1)-UxEXD (2, %ES1*0Y))*0T
GO 70 23
21 CONTINUE
E(1e2)ZE(1e])
23 CONTINUE
DO1e2)=D(1 w1 )+B01e 1) 2 (V{211 -V I1el))*(DT/0Y)+VI(1+1)*(D(2+1)-2(1s1)
1)+(DT/0Y)
VI192)ZW (1ol J+VILIa 1) #0V(291)-VIEi1lel))*(DOT/DY)-ALPHA®E(1+1)*DT
E1zE£{(1+2)> (. 0001
EE-E(1+2)
I=1
IF(KK=2) 2u44926+26
24 CONTINUE
APROX=0.
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GO0 T0O 28
26 CONTINUE
APROXZES1+(ES1-ESD)

28 CONTINUE
ES2=-ABS({APROX-EE)

IF(V(192)-V(1s1)) 4N0, 400,410
4CC CONTINUE

E(I+192)ZE(I+1s1)

GO TC 420
41C CONTINUE

E(I+102)E(T+2)+(D(I+2)-EXP(ES2*0Y)I*DY
420 CONTINUE

EECEE+(E(I+192)-E{T92))/2.+E(1+1,2)

I=1I+1

D(I+s2)7(D(I-191)+D(T+1 1)) /2 e+ (D{Te1 )% (VII+1+1)-VI{I-1012)+V(Te1l)=*

L(D(I+1+1)-D(I-1+1)))%0T/(2.%0Y)

VEIe?2)Z(VII-191)+VII+101))/2.4VI{Te 1) *(VII+101)-VII-1+11})2DT/

1(2.*0Y)~ALPHA*(E(T-1¢1)+E(TI+1+1))%0T/2.

30 CONTINUE
ES2=-ABS(APROX-EE)

TF(VE1v2)-V{1ls1)} 430,430,440
430 CONTINUE
E(I+192YZE(I+1¢1)
GD TC 450
u4GC CONTINUE
E(I+102)ZE(I-192)42.4(D(Te2)-EXPLES22DY) )} *0Y
450 CONTINUE

TESTZE(L+1 2}
IF(TEST) 3493432

32 CONTINUE
E(I+1e2)=C.

34 CONTINUE
EEZEE+(E(I+1922)-E(L192) )/ 2.+E(1+)42)
IZI+1
TESTZE(I+1e1)

TF(TEST) 36+35¢36

I5 CONTINUE
D(Ie2)Z1.

ViIs2)=1.
GO TC 33

36 CONTINUE
DULe2)(D(I-291)+D(I41 1)) /2a+(N(Tel)*x(V(I+12)-V(I-1s1)3+V(Ts]1)=

1(D(I+1o1)-D(I-1»1)))*DT/(2.%2Y]
VITe2)SUVII-1e1)+VIT+191))/2.+VIT21)2(V(I+1y1)-V(I-1+1))%DT/
1(2.%DY)-ALPHA*(E(TI-1+1)+E5(TI+1+1)14D7/2.

38 CONTINUE
NNZMM-1
IF(I-NN) 40+50s52



40 CONTINUE
G0 TO 30
CONT INUE

w
m

IF(VI(192)-V(1ls1)) U460s460.47N
uc0 CONTINUE
E(I+1+2)E(I+1+1)
GO TC 480
47C CONTINUE
ElI+102)E(I-12)+2.+(D(T92)-EXP(FS2%DY) }*DY
430 CONTINUE
TESTZE(I+142}
IF(TEST) S6s56+54

54 CONTINUE
E(I+1s2)=0.

56 CONTINUE
EECEF+(E(T+192)-E(T02))/2.4E(T 4152}
D{I+192)-0(I+2)
VII+192)ZVIIL2)

MMZI+1
DIFA-ASS{APROX-EE)
DELT-ABS(EE*.01)
IF(DIFA-DELTY 7070460

60 CONTINUE
NIFAZC(APROX—-EE)

APROXZAPROX-QDIFA/ZUW
Wow+ 5%l

I-1

EEZE(1+2)

GO TCO 28

70 CONTINUE
WZ-1.5%
WRITE(NSBD)Y KKsE(192)
A0 FORMAT(G6Xe22HELECTRIC FIELDN AT TTME,2XsI4+2Xs7HE(L1+2)=sE14.5)
LzL+1
IF(L-LL) R5+85+80
284 CONTINUE
DIFPZABS(FE-ES])
DIFDzABS(N(1e2)-0DC1s1))
DIFVZABSIV(1¢2)-VI(1e1))
IF(DIFP-DELP) 300+30Cy 85
730 CONTINUE
IF(DIFD-DELD) 31C» 210985
21C CONTINUE
IF(DIFV-DFELV]) S0+9Cs8S
B5 CONTINUE
JoZJd+1
IF(J-Jd) 160+90,90
9C CONTINUE
J=2
WRITE(Ns 130} KK
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110 FORMAT(//2X+25HPLASMA PARAMETERS AT TIME,2Xy I4)
NNZMM-1
SUMZFE
00 113 I=1eNN
P{I)ZSUM=DY
SUMZSUM- (S (I 92)+E(I+1s2))/ 2
IF(SUM) 110+110+1C4
104 CONTINUE
suMz=n,
110 CONTINUE
P(MM)=P{NN)
WRITE(Ns 120) (IsP{I)sIz]1sMMeM)
120 FORMAT L/ /772X 9 9HPOTENTIAL//(6Xe IR oF 16 o7 9o IhoEl G 7015951607 9169 F 16 T
116¢E£16.71))
WRITE(Ns130) (IeE(TI92)el=1eMMy™)
130 FORMAT(///2X 91 8HELECTRIC FIFLD//(EX+I69E16 .7 vI6+E16Ga79I69E167 916y
l1E16.7¢169E16.71)) ’
WRITEUN2180) (IsD(T92)eIz1eMMyM)
140 FORMAT(/ /72X +18HION NUMBER DENSITY//(6XeI6+E16 47 eT169E16.79 I169E16 47
19169E16479169E£16.71))
WRITE(NS150) (TeV{Ie?2)el=1loyMMyM)
15G FORMATU(///2X+20HAVERAGE ION VELOCITY//(6XeI6eFE 16 a7 9I6+E1E, 7916y
1167216951679 1CE9E16.7))
WRITE(N»155)
155 FORMAT(//7)
IF(L-LL) 160+160y156
156 CONTINUE

CONVERGANCE TEST

IF(OIFP-NELP) 22(C» 320, 330
220 CONTINUE
WRITF(Ny315)
215 FORMAT(3Xs11HP CONVEPGES/)
JIMzZUIM+1
320 CONTINUE
IF(DIFD-DELD) 34Cy 340,350
40 CONTINUE
WRITE(Ns?45)
245 FORMAT(3Xs11HD CCNVESGES/)
JIMZJIM+1
750 CONTINUE
IF(OICV-DFLV) 360y 3250y 15N
AL CONTINUL
WRITE(Ne365)
265 FCRMAT(3Xe11HV CONVERGES/)
JIMZUIM+]
IF(JIM-3) 160+190+190
15C CONTINUE
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120

-
o]
ja)

~J
[9s)

]

RESET FOR NEXT TIME ITERATION

Viz=v{(lsl)

DO 187 I-1eMM
E{Iv1)ZE(TI2]
O(Ie13=0(T92)
VIIe1)ZV(TI2)
£SgzEs1
ES1zEFE

EEZQ.

KKZKK+1

JIM=C
IF(V(1e2)-V1] 2142120
CONTINUE
WRITEI(N,2QQ)

FORMAT{2X+22HEGUILIBRIUM CONDITTIONS)

sSToP
END
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